Coastal Engineering Technical Note ## LEO LITTORAL ENVIRONMENT OBSERVATIONS By Leonette J. Thomas and William C. Seabergh #### **PURPOSE** The objective of this Coastal Engineering Technical Note is to describe the Littoral Environment Observation (LEO) measurement system and the tools available for District Offices to implement their own LEO data collection program. LEO provides low-cost coastal data for the planning, design, operation, and maintenance of coastal works. LEO consists of systematic collection of wind, wave, and current data visually obtained by volunteer observers. LEO data are collected primarily at sites where little or no wave data exist, where resources are not available for installation of recording instruments, or where daily measurements such as beach width are desired. Over 360 LEO collection stations have been established on U.S. coasts. Data from previous LEO data collection efforts are available at each District office and some limited LEO data are available in the CEDARS database (reference CETN-I-23). #### TYPES OF LITTORAL VARIABLES OBSERVED AND RECORDED The LEO field measurements typically recorded are shown in Figures 1 and 2 (LEO recording form). Visual estimates are made of the wave period, breaker height, wave type, and width of surf zone. A protractor, shown in Figure 2, is used to estimate the direction from which the waves are approaching. The wind direction is noted on an 8-point compass. Windspeed is measured by a hand-held wind meter. A hand level is used to estimate the foreshore slope. The spacing of any observed rip currents (strong surface currents flowing seaward from the shore) and beach cusps (low mounds of sand separated by crescent-shaped troughs) are recorded. Littoral current speed and direction are measured by injecting dye and measuring its movement alongshore for a period of 1 min. The alongshore current can then be determined. The instruments mentioned earlier (wind meter and hand level) and environmentally safe dye can be obtained from sources noted prior to the references. In addition, the observer may take sand samples of the material on the beach if this type of data is required and may also measure beach width. Remarks and comments by the observer regarding unusual beach weather or ocean conditions are recorded. LEO observations are usually taken once (or twice) a day, and sand samples are re-collected once a month. | LITTORAL ENVI | RONMENT OBSERVATIONS | |--|--| | | TA CAREFULLY AND LEGIBLY | | SITE NUMBERS YEAR M | ONTH DAY TIME | | | | | 1 2 3 4 5 6 7 | 8 9 10 11 12 13 14 15 | | WAVE PERIOD | BREAKER HEIGHT | | Record the time in seconds for | Record the best estimate of the | | eleven (11) wave <u>crests</u> to pass a | average wave height to the nearest | | stationary point. If calm record 0. | length of a foot. | | | | | 16 17 18 | 19 20 21 | | WAVE ANGLE AT BREAKER | WAVE TYPE | | Record to the nearest degree the | 0-Calm 3-Surging | | direction the waves are coming from | 1-Spilling 4-Spill/Plunge | | using the protractor on the following | 2-Plunging | | page. 0 if calm | | | | | | 22 23 24 | 25 | | WIND SPEED | WIND DIRECTION | | Record wind speed to the nearest | Direction the wind is coming from. | | mph. If calm record 0. | 1-N 3-E 5-S 7-W 0-Calm | | | 2-NE 4-SE 6-SW 8-NW | | | | | 26 27 | 28 | | FORESHORE SLOPE | WIDTH OF SURF ZONE | | Record foreshore slope to the | Estimate in feet the distance from | | nearest degree. | shore to breakers, if calm record 0. | | | | | | | | 29 30 | 31 32 33 34 | | LONGSHORE CURRENT | DYE | | | Estimate distance in feet from | | | shoreline to point of dye injection. | | | | | | 36 37 38 | | CURRENT SPEED | CURRENT DIRECTION | | Measure in feet the distance the | 0 No longshore movement
+1 Dye moves toward right | | dye patch is observed to move during
one minute period; if no longshore | +1 Dye moves toward right -1 Dye moves toward left | | movement record 0. | | | | | | 42.44.45 | 46 47 | | 43 44 45
WES FORM 2397, R Aug 94 | PREVIOUS EDITIONS OBSOLETE. | Figure 1. LEO Recording Form (front view) | RIP CURRENTS | | | | | | | | |--|---------------------------------------|--|--|--|--|--|--| | If rip currents are present, indicate spacing (feet). If spacing is irregular | | | | | | | | | estimate average spacing. If no rips record 0. | | | | | | | | | | Ì | | | | | | | | 49 50 51 52 | | | | | | | | | BEACH CUSPS | BEACH WIDTH | | | | | | | | If cusps are present, indicate spacing | Measure the distance of the most | | | | | | | | (feet). If spacing is irregular estimate | seaward Beach Berm crest from a | | | | | | | | average spacing. If no cusps record 0. | reference point to the nearest foot. | | | | | | | | | | | | | | | | | 54 55 56 | 57 58 59 60 | | | | | | | | PLEASE PRINT: | | | | | | | | | SITE NAME | OBSERVER | | | | | | | | Please Check The For | m For Completeness | | | | | | | | REMARKS: | | | | | | | | | OCEAN OC | | | | | | | | | OBSERV | | | | | | | | | | he pier, sight along the crest of the | | | | | | | Figure 2. LEO Recording Form (back view) Data collected from each site are compiled and summarized. Daily records are statistically summarized into monthly and yearly averages. This data can be useful in describing the beach environment at a particular site. Observer bias for high or low readings can be partially compensated for by looking at relative changes, rather than at the absolute values of certain parameters. #### **APPLICABILITY** The tabulated LEO data are useful for planning, design, operation, and maintenance of coastal facilities. While the data may not be as accurate as those obtained from recording sensors such as wave gauges and current meters, it is obtained at a relatively low cost. Because of this, it can often be obtained when instrumented information cannot. LEO data generally provide a wider suite of information than do an instrument station. LEO provides input for the following principal study items that can be used in solving coastal problems. - 1. **Geomorphology** - 2. Material characteristics - 3. Winds and storms - 4. Waves and currents - 5. Ice conditions - 6. Shoreline and offshore depth changes - 7. Littoral transport (direction, amount, and character). - 8. Effects of inlets. - 9. Zoning considerations. Comparison of the various beach material parameters for many beach locations should result in additional understanding of the geomorphology of a particular site, when correlated with all the other observed data. This can enhance the understanding of shore dynamics in relation to the materials composing the beach. One of the several useful applications of LEO data is the prediction of longshore transport rates from waves breaking at an angle to the shoreline (item 7 above). These waves produce a longshore current, which, when coupled with the breaking wave turbulence, will suspend sediment and transport sand along the shore. LEO longshore current values allow computation of the longshore energy flux, which allows prediction of the longshore sand transport. Recent comparisons between two independent observers at a single LEO site suggest that more consistency exists for transport rates computed from their observations of longshore current velocity than from their observations of wave height and angle. Compilations of the observed data on surf characteristics and beach response are also useful for studies directed primarily toward the recreational aspects of the shore. The ability to predict the overall characteristics of a beach for such uses as swimming and surfing will allow the appropriate agencies to assign various classifications of safety on use of the beaches. #### **DATA ANALYSIS** A program, Littoral Environment Observation (LEO) PC Data Retrieval and Analysis System, is available for PC on a 3.5 in. diskette along with the "User's Guide for the Littoral Environment Observation (LEO) PC Data Retrieval and Analysis System" (Thomas 1994). Both may be obtained from the local Corps of Engineers District, along with an instructional video showing how LEO data are obtained. A listing of LEO data sites where previous LEO data were collected is shown in Table 1. The PC program can analyze the previous LEO data (Table 1) or new data, if they are contained in an ASCII text file with each line of data placed in the order as shown in the LEO recording form (Figures 1 and 2). The program can produce summary tables and percent occurrence tables of the measurements and also compute longshore sediment movement rates. See Thomas (1994) for further details. #### **SOURCES OF EQUIPMENT** Dwyer Handheld Windmeter, Stopwatch, Hand Level, Compass Forestry Supplers, Inc. 205 W. Rankin St. P.O. Box 8397 Jackson, MS 39284-8397 Phone: 1-800-647-5368 Fax: 1-800-543-4203 - Dwyer Handheld Windmeter Catalog No. 89001 \$14.25 - Digital Stopwatch Catalog No. 92627 \$32.75 - Abney Level Catalog No. 43922 \$65.90 - Compass Catalog No. 37017 \$18.50 #### Powdered Dye (Uranine Concentrate Dye-yellow) Tricon Colors, Inc. 16 Leliarts Lane Elmwook Park, NJ 07407 Phone: 201-794-3800 - \$10.70 per pound - prepacked in 100 pound drum repacking fee for smaller quantity Slingshot, stopwatch, and compass can probably be purchased locally Ideally the compass should have eight points identified, ie., N, NE, E, SE, SW, W and NW. #### REFERENCE Thomas, L.J. (1994). "User's guide for the littoral environment observation (LEO) PC data retrieval and analysis system," Instruction Report CERC-94-2, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. #### **BIBLIOGRAPHY** Balsillie, J. H. (1975). "Analysis and interpretation of littoral environment observation (LEO) and profile data along the western panhandle coast of Florida," Technical Memorandum 49, Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Bruno, R.D., and Hiipakka, L.W. (1973). "Littoral environment observation program in the state of Michigan." *Proceedings of the 16th Conference on Great Lakes Research*, International Association of Great Lakes Research, 492-507. DeWall, A.E. (1977). "Littoral environment observations and beach changes along the southwest Florida coast," Technical Paper 77-10, Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Schneider, C. (1981). "The littoral environment observation (LEO) data collection program," Coastal Engineering Technical Aid 81-5, Coastal Engineering Research Center, U.S. Army Engineer Waterways Experiment Staiton, Vicksburg, MS. Sherlock, A.R., and Szuwalski, A. (1987). "A user's guide to the littoral environment observation retrieval system," Instruction Report CERC-87-3, U.S. Army Engineer Waterways Experiment Station, Vicksburg, MS. Shore protection manual. (1984). 4th ed., 2 Vol, U.S. Army Engineer Waterways Experiment Station, U.S. Government Printing Office, Washington, DC. Smith, E.R., and Wagner, S.E. (1991). "Littoral environment observation program," *Journal of Coastal Research* 7(3), 595-605. ### **TABLE 1: LEO SITE LOCATIONS** | | | | | | | T | | | |----------------|-------------------------------------|----------|-------------------------|------------------------------------|----------|----------------|-------------------------------|----------| | SITE | LOCATION | ST | SITE | LOCATION | ST | SITE | LOCATION | ST | | 02001
02002 | KOTZEBUE WAY | AK | 05565 | SOLONA BEACH | CA | 12081 | ST.AUGUSTINE | FL. | | 02002 | SHORE LANE
NINILCHIK | AK
AK | 05566
05567 | ORTEGA | CA | 12090 | SANTAL ROASA ISLANDS | FL | | 02007 | HOMER SPIT | AK | 05568 | TARAVAL
SLOAT | CA
CA | 12101 | CRYSTAL | FL | | 02009 | HOMER SPIT | AK | 05569 | FULTON | CA | 12104
12105 | CAMP HELEN | FL | | 02015 | HOMER SPIT | AK | 05570 | IRVING | CA | 12110 | ST. ANDREWS
GRAYTON | FL | | 02016 | HOMER SPIT | AK | 05595 | CASSIDY STREET | CA | 12115 | J.C. BEASLEY | FL
FL | | 02022 | HOMER SPIT | ΑK | 05596 | WITHERBY STREET | CA | 12118 | NAVARRE | FL | | 02044 | HOMER SPIT | ΑK | 05597 | WISCONSIN TOWER | CA | 12120 | FT. PICKENS | FL | | 02054 | HOMER SPIT | AK | 05598 | MUNICIPAL PIER | CA | 12895 | REDINGTON SHORES | FL | | 05001 | NEW BRIGHTON | CA | 05599 | HARBOR BEACH | CA | 12897 | PANAMA CITY | FL | | 05002 | THORNTON BEACH | CA | 05700 | NEWPORT BEACH | CA | 12898 | BASIN BAYOU STATE PK | FL | | 05003 | FRANCIS BEACH | CA | 05701 | OFFICER'S PIER | CA | 12900 | MEXICO BEACH, EAST | FL | | 05004
05005 | NATURAL BRIDGES | CA | 05702 | PEG NAVY (PT MUGU) | CA | 12901 | MEXICO BEACH, WEST | FL | | 05006 | TWIN LAKES
SEA CLIFF | CA | 05703 | PEG PIER (CERC) | CA | 13002 | SAPELO IS. PROFILE #2 | GA | | 05007 | SUNSET BEACH | CA
CA | 05704
05706 | BALBOA BEACH | CA | 13005 | SAPELO IS. PROFILE #5 | GA | | 05009 | SAN SIMEON | CA | 05707 | PEG 1000" SOUTH
PEG 1000" NORTH | CA
CA | 13101 | TYBEE LIGHTHOUSE | GA | | 05012 | PISMO BEACH | CA | 05712 | SILVER STRAND NORTH | CA | 13102
13103 | DESOTO MOTEL POLICE STATION | GA | | 05013 | EL CAPITAN | CA | 05713 | NET-SOUTH | CA | 13107 | POLICE STATION
NORTH BEACH | GA
GA | | 05014 | CARPENTERIA | CA | 05714 | MID-NET | CA | 13108 | WANDERER | GA | | 05015 | SAN BUENAVENTURA | CA | 05715 | NET-NORTH | CA | 13109 | BUCCANEER | GA | | 05017 | LEO CARRILLO | CA | 05720 | MANDALAY BEACH | CA | 13110 | SOUTH WATER TOWER | GA | | 05018 | BOLSA CHICA | CA | 05725 | PIERPONT BAY | CA | 13111 | EAST BEACH | GA | | 05019 | PT. MUGU REC AREA | CA | 05735 | HOBSON BEACH | CA | 13112 | COAST GUARD | GA | | 05020 | GOAT ROCK | CA | 05736 | MUSSELL SHOALS | CA | 13113 | KING AND PRINCE BEACH | GA | | 05021 | WRIGHT'S BEACH | CA | 05825 | EAST BEACH | CA | 13114 | ST. SIMONS SCHOOL | GA | | 05022 | STINSON BEACH | CA | 05850 | LEDBETTER | CA | 15001 | SUNSET BEACH | HI | | 05023
05024 | MANCHESTER BEACH
VAN DAMME BEACH | CA
CA | 05994
05995 | YELLOW ONE | CA | 15010 | HANILEI | н | | 05025 | RUSSIAN GULCH | CA | 05996 | SAN ONOFRE
OCEANSIDE | CA | 15200 | BELLOWS AFS | щ | | 05025 | MACKERRICHER | CA | 05999 | BORDERFIELD | CA
CA | 15201
15202 | KUALOA
WILO DA V EDONIT | Н | | 05027 | HUNTINGTON BEACH | CA | 09001 | SHERWOOD IS POINT | CA | 17050 | HILO BAY FRONT
SHERIDAN | HI
IL | | 05028 | DOHENY BEACH | CA | 09002 | SHERWOOD IS WEST PT | CA | 17090 | ILLINOIS BEACH | ΪĹ | | 05029 | SAN CLEMENTE | CA | 09003 | COMPO COVE FENCE | CA | 18020 | CENTRAL | IN | | 05039 | NORTH CARLSBAD | CA | 09004 | COMPO COVE WEST | CA | 18030 | EAST PARK | IN | | 05031 | SOUTH CARLSBAD | CA | 09005 | PROSPECT | CA | 18040 | STATE PARK | IN | | 05033 | SAN ELIJO | CA | 09006 | PUMP STATION | CA | 18050 | OGDEN | IN | | 05034 | TORREY PINES | CA | 09007 | SEAVIEW AVE | CA | 22101 | HOLLY BEACH | LA | | 05035 | SILVER STRAND ST. PK. | CA | 09008 | SOUTH STREET | CA | 22102 | FONTAINE BLEAU | LA | | 05036 | PRAIRIE CREEK REDWOOD | | 10100 | PICKERING BEACH | DE | 23001 | WILLARD BEACH | ME | | 05037 | LONG BEACH, 65TH PLACE | | 10101 | KITTS HUMMOCK | DE | 26001 | ASSATEAGUE | MD | | 05110 | IMPERIAL BEACH SOUTH | CA | 10102 | BOWERS BEACH | DE | 26002 | ASSATEAGUE NORTH | MD | | 05120
05140 | IMPERIAL BEACH NORTH
DEL MAR | CA
CA | 10103
10104 | SLAUGHTER BEACH
BROADKILL | DE
DE | 26003 | ASSATEAGUE SOUTH | MD | | 05185 | BUHNE POINT | CA | 10104 | LEWES | DE | 26005
26009 | OCEAN CITY, 52ND ST. | MD | | 05300 | NAVARRO | CA | 10106 | INDIAN RIVER INLET | DE | 26995 | SMITH ISLAND
CHESAPEAKE | MD
MD | | 05301 | SHELTER COVE | CA | 12000 | PERDIDO KEYS | FL | 26997 | POTOMAC | MD | | 05302 | CENTERVILLE BEACH | CA | 12001 | K.A. HANNAH | FL | 27004 | LECOUNT HOLLOW | MA | | 05306 | MAD RIVER | CA | 12002 | ATLANTIC BEACH | FL | 27005 | WASHBURN ISLAND | MA | | 05307 | REDWOOD CREEK | CA | 12003 | SOUTH LAKE WORTH IN. | FL | 27006 | EEL POND | MA | | 05310 | PELICAN | CA | 12040 | SOUTH PALM BEACH | FL | 27007 | BRANT ROCK | MA | | 05313 | ENDERTS BEACH | CA | 12041 | JUPITER | FL | 27008 | NAUSET LIGHT | MA | | 05336 | MISSION BEACH | CA- | 12042 | BOCA RATON | FL | 28002 | NEW BUFFALO | MI | | 05355 | DRAKE'S BEACH | CA | 12043 | HOLLYWOOD | FL | 28005 | WARREN DUNES | MI | | 05367 | CAPITOLA BEACH | CA | 12044 | GOLDEN
MARINELAND STAD | FL | 28010 | VAN BUREN | MI | | 05401
05402 | VENTURA SITE 1 | CA
CA | 12054
12055 | MARINELAND STAD. MARINELAND NORTH | FL
FL | 28020
28025 | GRAND HAVEN | MI | | 05402
05403 | VENTURA SITE 2
VENTURA SITE 3 | CA | 12055 | MARINELAND QUALITY | FL
FL | 28025
28030 | HOFFMASTER
MUSKEGON | MI
MI | | 05411 | ARROYO BURRO ST. PK. | CA | 12056 | MARINELAND SOUTH | FL | 28035 | SILVER LAKE | MI | | 05412 | SHORELINE PARK | CA | 12060 | HAULOVER | FL | 28040 | MEARS | MI | | 05412 | LEADBETTER BEACH | CA | 12062 | ALTOS DELMAR | FL | 28045 | LUDINGTON | MI | | 05414 | EAST BEACH | CA | 12063 | SMATHERS BEACH | FL | 28050 | ORCHARD | MI | | 05417 | LOOKOUT PARK | CA | 12064 | INDIAN BEACH PARK | FL | 28055 | BENZIE (PLATT RIVER) | MI | | 05419 | HOLLY AVENUE | CA | 12066 | LUMMUS PARK | FL | 28060 | D.H. DAY | MI | | 05500 | BOLINAS | CA | 12067 | JENSON 2 NORTH | FL | 28065 | CHARLEVOIX | MI | | 05501 | FISHERMANS WHARF WEST | | 12068 | JENSON 2 SOUTH | FL | 28280 | WELLS | MI | | 05502 | FISHERMANS WHARF EAST | | 12069 | STUART 3 SOUTH | FL | 28410 | PORCUPINE | MI | | 05503 | FISHERMANS WHARF PIER | | 12070 | MONROE A | FL | 28420 | ONTONAGON | MI | | 05560 | ALAMEDA | CA | 12071 | MONROE B | FL | 28430 | MCLAIN | MI | | 05561 | SYCAMORE | CA | 12072 | MONROE C | FL
FL | 28450
28470 | MARQUETTE | MI | | | | | | | | | | | | 05562 | LINDA LANE | CA | 12073 | MONROE D | | | MUSKALLONGE | MI
MI | | | T STREET CARDIFF FLATS | CA
CA | 12073
12074
12080 | MONROE E
ANASTASIA REC. AREA | FL
FL | 28480
28490 | TALQUAMENON
BRIMELY | MI
MI | ## TABLE 1 (concluded): LEO SITE LOCATIONS | · | | | | | | |----------------|--|----------|----------------|--|----------| | SITE | LOCATION | ST | SITE | LOCATION | ST | | 28630 | HOEFT | MI | 44500 | PRESQUE ISLE | PA | | 28640 | HARRISVILLE | MI | 44501 | PRESQUE ISLE #6 | PA | | 28660
28670 | TAWAS
BAY CITY | MI
MI | 44502
48002 | PRESQUE ISLE BCH 6 | PA | | 28675 | SLEEPER | MI | 48002 | CHERRY GROVE BEACH
NORTH INLET | SC
SC | | 28690 | LAKEPORT | MI | 48251 | BULL ISLAND #1 | SC | | 28750 | METRO | MI | 48252 | BULL ISLAND #2 | SC | | 28752 | PORT SANILAC (SEC 11) | MI | 48253 | BULL ISLAND #3 | SC | | 28753
28850 | SANILAC (SEC 26)
STERLING | MI | 48254 | HUNTINGTON BEACH | SC | | 30101 | HORN ISLAND GULF | MI
MS | 48257
48261 | MURRELLS INLET PORT ROYAL | SC
SC | | 30103 | SHIP ISLAND GULF | MS | 48262 | GRASSLAWN | SC | | 30104 | SHIP ISLAND SOUND | MS | 48263 | PALMETTO DUNES | SC | | 36001 | MANASQUAN INLET | NJ | 48264 | NIGHT HAWK | SC | | 36755
36989 | OCEAN CITY
CAPE MAY | NJ
LN | 48265 | HILTON HEAD INN | SC | | 38002 | 90TH ST. ROCKAWAY | NY | 48266
48267 | BAY BERRY
SOUTH BEACH | SC
SC | | 38004 | JACOB RIIS PARK 2 | NY | 48270 | KINGFISHER PIER | SC | | 38005 | JACOB RIIS PARK 4 | NY | 48271 | SURFSIDE HOLIDAY INN | SC | | 38006 | OCEAN BEACH | NY | 48272 | MARLIN QUAY | SC | | 38007
38008 | WEST HAMPTON
EAST HAMPTON | NY
NY | 48273 | FOLLY BEACH | SC | | 38009 | 29TH ST. ROCKAWAY | NY | 48275
48276 | N. LITCHFIELD BEACH
LITCHFIELD BY THE SEA | SC
SC | | 38010 | 94TH ST. ROCKAWAY | NY | 51001 | PADRE ISLAND | TX | | 38011 | 145TH ST. ROCKAWAY | NY | 51002 | PADRE SOUTH HOTEL | TX | | 38012 | CATTARAUGUS CRK. SOT | | 51010 | SEA RIM | TX | | 38013
38014 | CATTARAUGUS CRK. NOT
CG STATION, 300FT EAST | NY NY | 51240
51244 | BRYON BEACH | TX | | 38015 | GILGO UNDERPASS | NY | 51244 | SEA ISLE
GALVESTON | TX
TX | | 38016 | WEST GILGO | NY | 51248 | BERMUDA | TX | | 38017 | PT. LOOKOUT STATION | NY | 51250 | EAST BEACH | TX | | 38018 | COUNTY STATION | NY | 51251 | BOLIVAR | TX | | 38019
39001 | LIDO STATION
PEA ISLAND | NY
NC | 51253
51255 | SWEDE'S
GILCHRIST | TX
TX | | 39010 | SEA CREST | NC | 51256 | BEACH CITY | TX | | 39011 | DUCK NORTH | NC | 51257 | SHORE ACRES | TX | | 39012 | DUCK PIER | NC | 51600 | CORPUS CHRISTI | TX | | 39013 | DUCK SOUND | NC | 51601 | CORPUS CHRISTI NORTH | TX | | 39014
39015 | AVALON PIER
BOGUE SOUND | NC
NC | 54004
54005 | BUCKROE BEACH
EAST OCEANVIEW | VA
VA | | 39017 | DUCK 1600 FEET | NC | 54010 | CENTRAL BEACH | VA | | 39019 | SOUTHERN SHORES | NC | 54011 | CASTLEWOOD PARK | VA | | 39020 | DUCK SOUTH | NC | 57001 | EDIS HOOK #1 | WA | | 39098
39099 | OCEAN ISLE BEACH
SUNSET BEACH | NC
NC | 57002
57003 | EDIS HOOK #2
EDIS HOOK #3 | WA
WA | | 39322 | CAPE POINT | NC
NC | 57004 | EDIS HOOK #3
EDIS HOOK #4 | WA | | 39562 | ATLANTIC BEACH | NC | 57005 | OAK HARBOR | WA | | 41001 | LAKESHORE PARK 1 | ОН | 57006 | SUNNYSIDE BEACH | WA | | 41002 | LAKESHORE PARK 2 | OH | 57007 | SEAVIEW | WA | | 41003
41004 | LAKESHORE PARK 3
LAKESHORE PARK 4 | OH
OH | 57008
57009 | HOLMAN
PEACOCK SPIT | WA
WA | | 41008 | GENEVA ST. PARK | OH | 59010 | ALFORD | WI | | 41009 | LINWOOD PARK | ОН | 59011 | APOSTLE ISLAND | WI | | 41010 | LAKEVIEW PARK | ОН | 59012 | ZIPPEL BAY | WI | | 41011 | MAUMEE STATE PK | OH | 59015 | KENOSHA
GRANIT | WI | | 41012
43001 | PRESQUE ISLE #9
FT. STEVENS | OH
OR | 59030
59040 | GRANT
BRADFORD | WI
WI | | 43001 | BARVIEW BEACH | OR | 59070 | HARRINGTON | wi | | 43003 | SOUTH BEACH | OR | 59080 | KOHLER-ANDRAE | WI | | 43004 | NYE BEACH | OR | 59100 | HIKA | WI | | 43005 | UMPQUA SOUTH
HORSFAL BEACH | OR
OR | 59120
59140 | POINT BEACH PORT WING | WI
WI | | 43006
43007 | BASTENDORF | OR | 37140 | TOKI WINO | 44.1 | | 43007 | AGATE BEACH | OR | | | | | 43009 | HUBBARD CREEK | OR | | | ļ | | 43010 | BAILEY BEACH SOUTH | OR | | | | | 43011 | AIRPORT BEACH
SPORT HAVEN | OR
OR | | | | | 43013 | BAY OCEAN | OR | | | | | 43015 | BULLARDS | OR | | | | | 43016 | FACE ROCK | OR | | | | | 43017 | HACETA | OR | | | | | 43018
43019 | GOOSE MARSH
UMPOUA NORTH | OR
OR | | | | | 43019 | POINT ADAMS | OR | | | | | 43021 | ROCK DOCK | OR | | | 1 | | I | | | | | |